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Popular Summary 

TRMM (Tropical Rainfall Measurement Mission) offers a unique opportunity to 
improve the understanding of tropical meteorology and to evaluate the impact of rainfall 
data on tropical weather forecasts. Early studies demonstrated that assimilation of the 
TRMM microwave imager (TMI) derived rainfall data into large-scale global model is 
beneficial for the analysis of atmospheric general circulation (Hou et al. 2OOO) and also 
consequently can have significant impact on mesoscale forecast of Supertyphoon Paka 
(1997) (Pu et al. 2002). Instead of direct assimilation of rainfall data into the global 
model as in Hou et al. (ZOOO), this paper evaluates the impact of TMI rainfall on 
mesoscale forecast via the direct assimilation of the TMI-derived rainfall rate into the 
mesoscale regional model itself using a four-dimensional variational data assimilation 
(4DVAR) technique. 

Sensitivity studies are performed on the assimilation of TMI-derived rainfall data 
into a mesoscale model using a four-dimensional variational data assimilation (4DVAR) 
technique. A series of numerical experiments is conducted to evaluate the impact of TMI 
rainfall data on the numerical simulation of Hurricane Bonnie (1998). The results indicate 
that rainfall data assimilation is sensitive to the error characteristics of the data and the 
inclusion of physics in the adjoint and forward models. In addition, assimilating the 
rainfall data alone is helpful for producing a more realistic eye and rain bands in the 
hurricane but does not ensure improvements in hurricane intensity forecasts. Further 
study indicated that it is necessary to incorporate TMI rainfall data together with other 
types of data such as wind data into the model, in which case the inclusion of the rainfall 
data further improves the intensity forecast of the hurricane. This implies that proper 
constraints may be needed for rainfall assimilation. 

In addition, as the coverage of TMI data is very limited for the regional 
applications, the use of merged multi-satellite data or future Global Precipitation Mission 
(GPM) data products will be necessary for future applications. 
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ABSTRACT 

Sensitivity studies are performed on the assimilation of TRMM (Tropical 

M a l l  Measurement Mission) Microwave Imager (TMI) derived rainfall data into a 

mesoscale model using a four-dimensional variational data assimilation (4DVAR) 

technique. A series of numerical experiments is conducted to evaluate the impact of TMI 

rainfall data on the numerical simulation of Hurricane Bonnie (1998). The results indicate 

that rainfall data assimilation is sensitive to the error characteristics of the data and the 

inclusion of physics in the adjoint and forward models. In addition, assimilating the 

rainfall data alone is helpful for producing a more realistic eye and rain bands in the 

hurricane but does not ensure improvements in hurricane intensity forecasts. Further 

study indicated that it is necessary to incorporate TMI rainfall data together with other 

types of data such as wind data into the model, in which case the inclusion of the rainfall 

data further improves the intensity forecast of the hurricane. This implies that proper 

constraints may be needed for rainfall assimilation. 
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1- Introduction 

The Tropical Rainfall Measuring Mission (TRMM) is a joint Japan-U.S. project 

to measure rainfall over the global tropics. With the world's fxst precipitation radar, the 

TRMM satellite has provided the f i s t  detailed and comprehensive dataset on the four- 

dimensional distribution of rainfall and latent heating over the tropics (between 35' N and 

35' S). TRMM offers a unique opportunity to improve the understanding of tropical 

meteorology and to evaluate the impact of rainfall data on tropical weather forecasts. 

Early studies have demonstrated that assimilation of TRMM microwave imager (m 
derived rainfall data into large-scale global models is beneficial for the analysis of the 

atmospheric general circulation (Hou et al. 2000) and also consequently can have 

significant impact on mesoscale forecasts [e-g. Supertyphoon Paka in1997 (pu et al. 

20021. Instead of direct assimilation of rainfall data into the global model as in Hou et al. 

(2000) and Pu et al. (2002), this paper evaluates the impact of TMI rainfall on mesoscale 

forecasts via the direct assimilation of TMI-derived rainfall rates into the mesoscale 

regionaZ model itself using a four-dimensional variational data assimilation (4DVAR) 

technique. 

The description of the model, the 4DVAR system, the hurricane case, and the TMI 

data is addressed in section 2 and 3, respectively. Detailed numerical results, including 

sensitivity studies and forecast impacts, are given in section 4. A summary and discussion 

are given in section 5. 

2. Description of the mesoscale model and 4DVAR system 
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The Penn State University/National Center for Atmospheric Research 

(PSU/NCAR) mesoscale forecast model ( M M 5 )  and its adjoint system are used in this 

study. The MM5 is a limited-area, non-hydrostatic primitive equation model with 

multiple options for various physical parameterization schemes (Dudhia 1993; Grell et al. 

1995). The model employs a terrain-following o vertical coordinate, where o is defined 

as o= @- ptqy(ph -pmp) ,  p is pressure, and psfc and ptop are the pressures at the 

surface and model top, respectively. Physics options used for the forecast model in this 

study include the Grell cumulus parameterization, a simple ice microphysics scheme 

(Dudhia 1993), the Blackadar high-resolution planetary boundary layer parameterization 

scheme (Blackadar. 1976. 1979: B a n g  and Anthes 1982). and a cloud atmospheric 

radiation scheme (Dudhia 1993). The land surface temperature is predicted using surface 

energy budget equations as described in Grell et al. (1995). For a more detailed 

description of h4M5, see Dudhia (1993) and Grell et al. (1995). 

The MM5 adjoint modeling system (Zou et al. 1998) is employed in the data 

assimilation experiments. For the variational data assimilation system, the physics options 

in the adjoint model are the Grell cumulus parameterization, a simple ice microphysics 

scheme (Dudhia 1989), and the Blackadar high-resolution planetary boundary layer 

paramek~ation scheme. Application of the MM5 adjoint model to a variety of mesoscale 

weather systems has been demonstrated in papers by Kuo et al. (1996) and Zou and Kuo 

(1996). 

In general, a 4DVAR system tries to minimize the following cost function: 

J ( x o ) = X J , + J ,  , 
M JI1 
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where x is the analysis variable and the subscript “0” denotes the initial state. Jb is the 

background term, and Jk is the contribution to the cost function from an individual type of 

data. The subscript k denotes the type of data and m is the total number of available data 

types. For example, the contributions from one arbitrary type of observation can be 

described as follows: 

where 0 is the observation data, “i” denotes the “ith’,’ time step for integration of the non- 

linear forecast model M, at which the observations are available, and i E (0,~) , while A 

is the length of the assimilation window. Wis a weighting factor that depends on the 

statistical error characteristics of the observational data. H is a so-called observation 

qjziztm (possibly im- ’he~) ,  which trmsfcrs &e @d-spxe mxk! vzridAe x tc! tbe 

observational type- In order to minimize the cost function, the adjoint of the tangent 

linear model of the nonlinear forecast model is required (Talagrand 1987). 

The effectiveness of the 4DVAR technique for assimilation of precipitation 

observations has been addressed by Zou and Kuo (1996) and Zupanski and Messinger 

(1995). However, this paper will further investigate strategies on the assimilation of TMI 

data particularly. 

3. Hurricane Case and TMI rainfall data 

The TRMM Microwave Imager (TMI) is one of several TRMM satellite sensors. 

The TMI measures the horizontal distribution of rainfall by receiving microwaves 

emitted or scattered by raindrops and ice particles in five microwave channels. At NASA 
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Goddard Space Flight Center, the TMI microwave radiances are used to retrieve surface 

rainfall rate information via the Goddard Profiling (GPROF) algorithm. The basis for the 

rainfall retrieval algorithm is the Bayesian technique described in Kummerow et al. 

(1996) and Olson et al. (1996, 1999). In order to evaluate the impact of TMI rainfall data 

on mesoscale forecasts, these retrieved surface rainfall data are assimilated into the MM5 

model. 

The TMI footprints usually cover the global tropics (35’ N-35’ S )  in a 24-hour 

period. However, during a typical mesoscale analysis period (usually a 3 h or 6 h period) 

and for a specific regional domain, there are only limited TMI observations available. In 

most cases, the TMI samples only about twice a day for a certain region, and the time 

interval between the swathes may exceed 6 h. Considering the data availability during a 

6h analysis cycle, Hurricane Bonnie (1998) was selected from several storm cases to 

perform the sensitivity studies in this paper. 

There were two TRMM swathes that passed over Bonnie in the Atlantic Ocean with 

a time interval of about 6 h. The two overpasses were around 1139 UTC 22 August 1998 

and 1807 UTC 22 August 1998 Fig.l), respectively. At the time, Bonnie was a category 1 

hurricane based on the Saffir-Simpson intensity scale, having recently developed from a 

tropical storm. 1200 UTC 22 August 1998 was selected as the initial time for the 

experiments. A 6 h data assimilation window was set for the period 1200 UTC - 1800 UTC 

August 1998. 

Based on TMI-derived surface rainfall data being typically defined as an hourly 

“rain rate” and the actual data availability, the TMI-derived rainfall was treated as “hourly 

(3) 
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averaged rainfall”. Therefore, Eq.(2) can be written as follows: 

where T is the avera,@g time period (i.e., one hour), RR the retrieved TMI rain rate, and 

CR the model-generated rainfall in the time step. 

4. Numerical Experiments and Results 

The data assimilation experiments were conducted at 36 km resolution. The 

model domain is show in Fig.1. 

4.1 Sensitivity studies 

Numerical experiments were conducted to test strategies for assimilating TMI- 

retrieved rainfall rates. Two groups of sensitivity studies were performed to test the 

sensitivity of specification of the error characteristics and the inclusion of physics in the 

adjoint model to the TMI rainfall data assimilation. Table 1 lists the experimental 

configuration for all numerical experiments in this paper. 

a. Sensitivity of the specified rainfall data error characteristics 

The W factor in Eq.2 is a weighting factor that depends on the statistical error 

characteristics of the observations. To some extent, this factor represents how much the 

4DVAR system would “trust” the observations. Because the correlations between the 

observations are usually unknown or difficult to define, the W matrix is often defined as a 

diagonal matrix. Three experiments were conducted with the specification of the error 

characteristics as follows: in Experiment 1, W was set up as a unified number and 

defined as the inversion of variances based on all available data (Le., unified W); in 
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Experiment 2, a 20% error was assumed for the retrieved rainfall rate, and W was defined 

as the inversion of the error variances (i.e., 20% error); and in Experiment 3, the error 

characteristics were specified following Bauer et al. (2002) and Olson (personal 

communication) as: 

over ocean a, =1.357 RO.’ 

over land a, =2.516 R0.558 

where R is the retrieved rain rate and a, the standard deviation of the rain rate. The os 

was obtained from a large sample of retrieved rainfall rate datasets. 

Fig.2 shows the variation of the cost-function with the number of iterations. The 

definition of W mainly impacts the convergence of the minimization in terms of both 

cost-function reduction and speed of convergence. As a consequence, W effects how 

much information can be gained from the observations. The results show that it is 

obviously advantageous to use the error specification suggested by Bauer et al. (2002 ) 

and Olson (personal comm.). 

b. Inclusion of physics in the adjoint 

For a common forecast model (forward model), the cumulus parameterization and 

microphysical processes usually help the model to produce a better rainfall forecast. 

However, due to the difficulties in deriving an adjoint model for the physics package, in 

some previous studies (e.g., Zou and Kuo 1996), not all of the physics processes were 

included in the adjoint model. In order to test the impact of including physics in both the 

forward and adjoint models on data assimilation results, the following three experiments 

were conducted: in Experiment 4, both forward and adjoint models include cumulus 
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parameterization but not microphysics; in Experiment 5,  both cumulus parameterization 

and microphysical processes are included in the forward and adjoint models; and in 

Experiment 6, neither cumulus parameterization nor microphysical process are included 

in adjoint and forward models. For all Experiment 4-6, the specified error characteristics 

followed those in Experiment 3. 

Fig.3 shows the variation of the cost-function with the number of iterations. As 

expected, including all of the physics packages has the largest benefit in terms of both 

convergence and assimilation results. 

4.2. Impact on forecasts 

Figure 4 shows rainfall rates at the end of the data assimilation (6-h forecast) from 

Experiment 2 compared with the control experiment (CTRL) where rainfall data were not 

assimilated. Obviously, assimilating the rainfall data helps the model to produce a more 

realistic eye and rain bands in the hurricane. The results are quite encouraging. Twenty- 

four hour forecasts were conducted to test the impact of the rainfall data on the hurricane 

intensity forecast. Unfortunately, there was no improvement in the consequent forecasts. 

The forecasted track and intensity (in term of maximum surface wind and minimum sea 

level pressure) are almost the same in cases both with and without the TMI rainfall data 

assimilation (figure not shown), indicating the impact of rainfall data on consequent 

forecasts is almost negligible. This is not consistent with previous results (Pu et al. 2002). 

In order to explore additional strategies for rainfall data assimilation, an additional 

experiment was performed to assimilate rainfall data along with other data sets. As other 

conventional data is unavailable for this case, bogus vortex wind information is 
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introduced into the assimilation process. Following Pu and Braun (2001), the bogus wind 

data was derived from the gradient balance equations as follows: 

V z - ( r ) = [ A B ( p m  - p , ) e x p ( - A / r " ) / p r B y  (4) 

where I$'O" is the gradient surface wind at radius r, p the air density (assumed constant 

at 1.15 g m-3), pc  the central pressure andp, the ambient pressure (theoretically at infinite 

radius, however, here taken from representative values in the hurricane environment). 

The scaling parameters A and B are defined by maximum wind information. By setting 

dV,/dr = 0 , the radius of maximum surface wind (Rh4-W) is R, = A U B ,  and substitution 

YZ back into (4) gives the maximum wind speed, V, = C(p, - p , )  , where C = (B/pe)= and 

e is the bzse of the nanuai iogarithm. 

Baed = p a  tk best available esthates (according to the report &om the 

Humcane Research DivisiodAOMUNOAA), the parameters defining the bogus vortex 

are given by pc =980hPa centered at (22.3%, 69.8"W), pn=1012hPa, V,=38.6 m s-' , and 

Rm=120 km. The bogus wind information extends out to a radius of 350km. The surface 

wind is then extended into the vertical with a vertical profile following Pu and Braun 

(2001). For the experiments, the specified wind information is assimilated every 10 

minutes within the first 30 minutes. 

Two sets of numerical experiments were performed in a 6-h assimilation window. 

In the first experiment (Experiment 7), only bogus wind information was assimilated into 

the model. In the second experiment (Experiment 8), the rainfall data are incorporated 

along with the bogus wind information. 

Figures 5 and 6 show the rainfall rates at the end of the data assimilation (e-g., 6- 

h forecasts) for Experiment 7 and 8, respectively. Compared with the TMI observations 

t 
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(Fig-lb), the rainfall patterns in Fig. 8 are closer to the observed rainfall structure, 

indicating that assimilation of rainfall data further improves the asymmetric hurricane 

rainfall structure. 

Further comparison is illustrated by histograms of the probability density function 

(PDF) of 1-h rainfall amounts at the end of the data assimilation (Fig.7). The figure 

shows that rainfall is generally underestimated in the case with rainfall data assimilation 

but overestimated in the case without rainfall data assimilation. However, the spectral 

distribution of rainfall rates is relatively narrow, with only one peak in the case with 

rainfall data assimilation. When the rainfall data are assimilated into the model, the 

spectrum of rainfall rates becomes broad with multiple peaks; the heavy rainfall rates 

(-lOmm/hr) are also better represented compared to the case without rainfall 

assimilation. 

Figure 8 shows the time variation of the forecast hurricane intensity in terms of 

the maximum surface wind and minimum sea-level pressure for the subsequent 24 h 

forecasts. It indicates that rainfall data assimilation is not only helpful for producing 

better vortex rainbands but also improves subsequent forecasts. The positive impact 

shown in this group of experiments indicates that it may be necessary to incorporate 

TRMM rainfall data together with other types of data such as wind data in order to 

further improve the intensity forecasts for hurricanes. This implies that some constraints 

may be needed for rainfall assimilation. 

5. Summary and discussion 
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The main conclusions from numerical experiments with TMI rainfall assimilation 

in this study are: 

Rainfall data assimilation is sensitive to the error characteristics of the data and 

the inclusion of physics in the forward and adjoint models, suggesting that it is 

necessary to use the full physics model in rainfall data assimilation and to take 

into account the error characteristic of the data; 

Assimilating the rainfall data alone produces a more realistic eye and rain 

bands in the hurricane but does not ensure improvements in hurricane intensity 

forecasts. Numerical results indicate that it is necessary to incorporate TRMM 

rainfall data together with other types of data such as wind data into the model, 

in which case the inclusion of the rainfall data will further improve the intensity 

forecast of the hurricane. This implies that some constraints may be needed for 

rainfall assimilation. 

In addition to the TMI data, a similar experiment was performed assimilating 

surface rainfall data derived (from the same algorithm, i.e. GPROF) from TRMM 

precipitation radar (PR) for Hurricane Bonnie for the same assimilation window. 

Fortunately, the PR swathes overlap the TMI swathes in both time and space except that 

the PR swathes are much narrower than the TMI swathes (Le., they cover the one third of 

the TMt swathes, figure not shown). A data assimilation experiment similar to 

Experiment 3 was performed with the PR data. The results are very similar to those from 

the TMI data assimilation, suggesting that the PR can also provide useful data sets for 

rainfall assimilation. 
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Future studies will be conducted to further confirm the above conclusions, and to 

explore the possibility of incorporating TMI and PR rainfall with other conventional and 

satellite data to improve mesoscale precipitation and storm forecasting. On the other 

hand, the coverage of both TMI and PR data is very limited for regional applications. 

Therefore, the use of merged multi-satellite data (e-g., Huffman et al. 2001; Huffman and 

Bolvin 2003) will be another alternative option for future study. However, since the 

Global Precipitation Mission (GPM) is under preparation, a large benefit to NWE' could 

be obtained from that global precipitation data. 
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Table 1. Experimental Design 

Experiment Definition Physics Bogus Rainfall 
Number of W Term Included vortex Assimilation 

CTRL No Grell cumulus scheme No No 
Dudhia microphysics 

1 Unified Grell cumulus scheme No Yes 
Dudhia microphysics 

2 20% error Grell cumulus scheme No Yes 
Dudhia microphysics 

3 Bauer &ell cumulus scheme No Yes 
Dudhia microphysics 

4 Bauer Grell cumulus scheme No Yes 
5 Bauer Grell cumulus scheme No Yes 

Dudhia microphysics 
6 Bauer None No Yes 

No P- ule!! cmdus scheme Yes 7 No 
Dudhia microphysics 

8 Bauer Greii cumuh.~.~ scheme Yes Ycs 
Dudhia microphysics 

for rainfall 
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Figure Caption 

Fig.1 Rain rates (mm/hr) for two TMI swathes that passed over the Hurricane Bonnie 

(1998) around a) 1139 UTC 22 August 1998 and b) 1807 UTC 22 August 1998. 

Fig2 Variation of normalized cost-function with iteration number for Experiment 1 

(dotted line), Experiment 2(dashed line) and Experiment 3(solid line). 

Fig3 Same as Fig-2, but for Experiment 4 (dotted line), Experiment 5 (solid line) and 

Experiment 6 (dashed line). 

Fg.4 Hourly accumulated rainfall rate (&) at the end of data assimilation (6h) for a) the 

control run (CTRL), b) Experiment 5 and c) the differences between a) and b). 

Fe.5 HCXU~ XCWXX~&C~ i&fd iak (IIXWWJ at the end of data assimilation for 

assimilation of bogus wind only (Expimeat 7). 

Fig.6 Same as Fig.5, but both bogus wind and rainfall data assimilated (Experiment 8). 

Fig.7 Histograms of probability density functions of 1-h rainfall amounts at the end of data 

assimilation for Experiment 7 (solid line with cross), Experiment 8 (solid line) and for 

TMI observations(solid line with dots). 

Fig.8 Time series (3-h intervals) of a) maximum wind ( d s )  at the lowest model level 

(about 50 m) and b) minimllm sea-level pressure @a). 
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